Obtaining an Analytical Model for Low-swirl Combustion

- Apply Particle Imaging Velocimetry (PIV) to measure instantaneous velocity vectors within an area of 13 x 13 cm
 - Facilitates the collection of a large amount of flowfield data
- Characterize flowfield and flame behavior as function of:
 - swirl number
 - fuel type
 - fuel air ratio
 - bulk flow velocity
- Define key parameters that characterize the flowfield
- Develop analytical model for the relationships between the flame and flowfield
 - Basis for scaling and adaptation guidelines
 - Less reliance on computational fluid mechanics (CFD)
 - Reduce uncertainties and increase predictability

Apparatus, Diagnostics & Analysis

- LSI mounted to the plenum and premixer of an industrial burner
- Applied PIV to atmospheric open flames
 - Previous development with Solar demonstrated relevancy of open flame experiments
- Deduced mean, rms velocities, Reynolds stresses & turbulent flame speeds

Experimental Conditions

- Lean flames burning single and dualcomponent fuels with a range of Wobbe indices
- Operating regimes for each fuel defined by LBO and emissions
- Varied bulk flow velocity U₀ from 7 to 22 m/s

J			
Fuel Composition	T _{ad} at φ = 1 Κ	S _L at φ = 1 m/s	S _L at T _{ad} = 1800K
CH ₄	2230	0.39	0.17
C ₂ H ₄	2373	0.74	0.23
C ₃ H ₈	2253	0.45	0.22
0.5 CH ₄ / 0.5 CO ₂	2013	0.20	0.12
0.6 CH ₄ / 0.4 N ₂	2133	0.31	0.16
0.6 CH ₄ / 0.4 H ₂	2258	0.57	0.22
H ₂	2535	2.4	0.61
0.5 H ₂ / 0.5 N ₂	2056	1.2	0.61

Raw PIV image showing wrinkled premixed turbulent flame structures

Hydrocarbon Flame Results

Mean velocity vectors on axial plane

Mean velocity vectors on axial plane

Mean velocity vectors on axial plane

Mean velocity vectors on axial plane

Mean velocity vectors on axial plane

Mean velocity vectors on axial plane

Mean velocity vectors on axial plane

Mean velocity vectors on axial plane

Mean velocity vectors on axial plane

Normalized mean vectors and Reynolds stress at $U_0 = 7$ m/s

Normalized mean vectors and Reynolds stress at $U_0 = 10$ m/s

Normalized mean vectors and Reynolds stress at $U_0 = 15$ m/s

Normalized mean vectors and Reynolds stress at $U_0 = 19$ m/s

Normalized mean vectors and Reynolds stress at $U_0 = 22 \text{ m/s}$

PIV Measures the Parameters that Describe Flame/Flow Coupling in LSI

• Four parameters deduced from the centerline velocity profile Virtual Origin, x_0 , Normalized Axial Divergence Rate, a_x , Flame Position, x_f and Turbulent Flame Speed, S_T

S_T of CH₄, C₃H₈, C₂H₄ and Diluted HC Flames Show Linear Correlation

- S_T from LSI flames consistent with those of previous studies
- Linear behavior unique to low-swirl combustion
- Additional data being obtained at higher U₀

Trends of x₀, and a_x with Reynolds Number Indicate Similarity

- Virtual origin x₀ leveling-off at high Re
 - Slight shift of the divergence flow structures into the injector barrel with increasing velocity
- Normalized divergence stretch a_x insensitive to Re
 - Combustion generates a systematic increase in a_x
- Nearfield flow structures have a similar form that is independent of power output

Similarity in the Nearfield Shown by Normalized Centerline Profiles

Significant Implication of Similarity

- Provides an analytical means to quantify the flame/flow relationship by the use of a_x, U₀, S_T and x_f
 - the axial velocity at x_f is

$$U_o - \frac{dU}{dx} (x_f - x_o) = S_T$$

Divide through by U₀ and invoke S_T correlation gives

$$1 - \underbrace{\frac{dU}{dx} \underbrace{(x_f - x_o)}_{U_o}}_{(x_f - x_o)} = \underbrace{\frac{S_T}{U_0}}_{U_o} + \underbrace{\frac{S_L}{U_0}}_{U_o} + \underbrace{\frac{2.16u'}{U_o}}_{U_o}$$

invariant due to similarity (i.e. a_x)

asymptote at large U₀

small at large U₀

constant for plate turbulence

Flowfield similarity and linear S_T correlations explains why flame remains stationary through a wide range of velocities and ϕ

Flashback and Flame Positions Predictable from Analytical Equation

- Results imply that fuel effects are significant only at low U₀
 - Velocity at flash back correlates with S_L
 - Flame position independent of S_L at large U₀

Flashback Considerations for Low-Swirl and High-swirl

Combustion oscillation flashback Vortex breakdown flashback due to axial vorticity in recirculation region Flashback through hot boundary layer at flame attachment region Convective flashback local velocity < S_⊤

- LSC analytical model addresses convective flashback
- Need studies on LSC vulnerability to combustion oscillation flashback

Flowfield Features Unaffected by Fuel Type

- Flowfield features of CH₄ and diluted CH₄ flames are the same
- Flame stabilization mechanism not affected by variation in fuel composition
- Slight shift in flame position due to slower burning flame

LSI Supports Stable < 5 ppm NO_x Hydrocarbon Flames

- Exponential NO_x dependence on φ
- CO emissions within acceptable limits

NO_x Emissions Show Log-linear Dependency on Flame Temperature

- NO_x emissions from STP laboratory experiments consistent with data at gas turbine conditions
- Absence of strong recirculation in LSI may explain the correspondence between laboratory and GT emissions

Preliminary Conclusions on Hydrocarbon Fuel-Flexibility Studies

- LSI accepts all test fuels including CH₄ diluted with H₂
- LSI supports stable < 5 ppm NO_x flames
- NO_x emissions scale with adiabatic flame temperature
 - NO_x emissions from laboratory flames STP consistent with high pressure rig test data at turbine conditions
- Significant adjustment may not be necessary for current LSI to fire with hydrocarbon fuel blends
 - **S**_T of hydrocarbon and CH₄ flames have same correlation
- Recent high T, P rig-tests at Solar Turbines demonstrate firing with fuels from 550 Btu/ft³ to 1250 Btu/ft³

Considerations for Adaptation of LSI to Fuel-Flexible & IGCC Turbines

- Changes in flame speed correlation will be the 1st order effect
 - Turbulent flame speeds for HC fuels have similar correlation as natural gas
 - Significant redesigning of swirler may not be necessary
 - Turbulent flame speed data for H₂ mixtures are lacking
 - Large uncertainties in laminar flame speed data for lean H₂ mixtures
- Changes in heat release will be the 2nd order effect
 - Changes in LSI flowfield correlates with combustion heat release
- LSI swirl rate can be adjusted to accommodate the fuel effects
 - Increase or decrease the swirl rate to optimize flame position

